Rank Determination for Low-Rank Data Completion

نویسندگان

  • Morteza Ashraphijuo
  • Xiaodong Wang
  • Vaneet Aggarwal
چکیده

Recently, fundamental conditions on the sampling patterns have been obtained for finite completability of low-rank matrices or tensors given the corresponding ranks. In this paper, we consider the scenario where the rank is not given and we aim to approximate the unknown rank based on the location of sampled entries and some given completion. We consider a number of data models, including single-view matrix, multi-view matrix, CP tensor, tensor-train tensor and Tucker tensor. For each of these data models, we provide an upper bound on the rank when an arbitrary low-rank completion is given. We characterize these bounds both deterministically, i.e., with probability one given that the sampling pattern satisfies certain combinatorial properties, and probabilistically, i.e., with high probability given that the sampling probability is above some threshold. Moreover, for both single-view matrix and CP tensor, we are able to show that the obtained upper bound is exactly equal to the unknown rank if the lowest-rank completion is given. Furthermore, we provide numerical experiments for the case of single-view matrix, where we use nuclear norm minimization to find a low-rank completion of the sampled data and we observe that in most of the cases the proposed upper bound on the rank is equal to the true rank.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Low Rank: A Data-Adaptive Tensor Completion Method

Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explici...

متن کامل

Bayesian Sparse Tucker Models for Dimension Reduction and Tensor Completion

Tucker decomposition is the cornerstone of modern machine learning on tensorial data analysis, which have attracted considerable attention for multiway feature extraction, compressive sensing, and tensor completion. The most challenging problem is related to determination of model complexity (i.e., multilinear rank), especially when noise and missing data are present. In addition, existing meth...

متن کامل

Efficient tensor completion: Low-rank tensor train

This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...

متن کامل

Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction

Prestack seismic data are multidimensional signals that can be described as a low-rank fourth-order tensor in the frequency − space domain. Tensor completion strategies can be used to recover unrecorded observations and to improve the signal-to-noise ratio of prestack volumes. Additionally, tensor completion can be posed as an inverse problem and solved using convex optimization algorithms. The...

متن کامل

Rank-One Matrix Completion with Automatic Rank Estimation via L1-Norm Regularization

Completing a matrix from a small subset of its entries, i.e., matrix completion, is a challenging problem arising from many real-world applications, such as machine learning and computer vision. One popular approach to solving the matrix completion problem is based on low-rank decomposition/factorization. Low-rank matrix decomposition-based methods often require a pre-specified rank, which is d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017